

ACCELERATE BOOSTS GOLD PORTFOLIO WITH EARN-IN OF BALAGUNDI PROJECT NEAR KALGOORLIE

Transaction Highlights

- Prime goldfield location ~20km east of Kalgoorlie's +70Moz Au Superpit and ~10km from Accelerate's Kanowna East Gold Project
- 27km² highly prospective tenure includes granted mining lease, in heart of toll mining and milling hub
- Historic intercepts include:
 - $_{\circ}$ 37m @ 1.69 g/t Au from 32m in BHHRC042
 - o 6m @ 1.85 g/t Au from 30m in BHRC003
 - o 5m @ 1.71 g/t Au from 114m in 21BGRC004
- Proven potential with kilometres of historical high-grade workings and associated gold-rich quartz veins and nugget fields extending from the adjacent Queen of Balagundi and Mt Bellew mines largely remaining untested by modern exploration
- Continues strategy of forging a highly prospective gold exploration hub within 25 km of Kalgoorlie, capable of discovering low-capex, fast-track gold ounces.

Accelerate Resources Limited ("AX8", "Accelerate" or the "Company") is pleased to announce the execution of a binding earn-in agreement for up to 80% interest in the highly prospective Balagundi Gold Project, strategically located ~20km east of Kalgoorlie in Western Australia's prolific Eastern Goldfields (Figure 2).

Figure 1: Examples of Balagundi Gold. Left image - gold in gossan. Middle image gold in quartz vein. Right image example of historic shafts within the Project.

Cautionary Statement: The Company cautions that, with respect to any visual mineralisation indicators, visual observations and estimates of mineral abundance and uncertain in nature and should not be taken as a substitute or proxy for appropriate laboratory analysis. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations. Assay results from the

drilling and sampling programmes will be required to understand the grade and extent of mineralisation.

The Balagundi earn-in represents a significant step in Accelerate's strategy to consolidate highly prospective, underexplored tenure in the Eastern Goldfields.

With 27km² of contiguous tenure, included a granted Mining Lease, Balagundi is situated in a structurally complex corridor of the Norseman–Wiluna greenstone belt, with folded basalt, dolerite, sediments and felsic intrusive - a proven setting for high-grade orogenic gold. Historical production at Queen of Balagundi and Mt Bellew validates high-grade vein-hosted systems, yet large under cover zones and targets await modern drilling.

Located just 10km from Accelerate's Kanowna East Project, Balagundi unlocks exciting new targets and provides significant synergies, allowing the Company to leverage exploration operations, geological data, and infrastructure across both projects.

Mr Luke Meter, Chief Executive Officer of Accelerate commented: "This transaction significantly strengthens our Eastern Goldfields holdings. Balagundi is a discovery-ready project with many historic high-grade results and untested high impact targets. The project hosts numerous shallow workings and shafts along high-grade quartz veins, a prolific and rich nugget field and vast untested zones with little to no modern exploration for 25 years. Combined with Kanowna East, we are forging a highly prospective gold exploration hub within 20 km of Kalgoorlie, capable of providing low-capex potential to fast-track any future discoveries."

Historic Drilling Highlights

Within Accelerate's earn-in tenure, historic drilling has defined significant gold intercepts both along the Balagundi–Paris trend and away from the main corridor. Significant results include:

- **37m** @ **1.45** g/t Au from 32m in BHR042 (1999)
- **6m** @ **1.86** g/t Au from 30m in BHRC003 (1999)
- 3m @ 4.30 g/t Au from 60m in BDD1 (1987)

More recently, limited exploration by SensOre in 2021 confirmed broad zones of gold mineralisation within the Balagundi Project, with intercepts including:

- 34m @ 0.54 g/t Au from 96m in 21BGRC004, including 1m @ 5.4 g/t Au and 2m @ 3.6 g/t Au
- 20m @ 0.22 g/t Au (4m composites) from 16m in 21BGRC003

These intercepts, supported by elevated pathfinder elements (arsenic, tungsten) and coincident gravity anomalies, indicate the presence of a larger mineralised system extending across multiple structural corridors.

Immediately adjacent and southeast of AX8's Balagundi earn-in tenure, RC drilling by Great Boulder Resources (2016–2017) at the Mt Bellew trend delivered high-grade results, including:

- 27m @ 1.42 g/t Au from 48m in BGP0083
- 4m @ 5.64 g/t Au (incl. 2m @ 10.4 g/t Au) from 135m in BGP0081

• 15m @ 1.25 g/t Au (incl. 2m @ 5.22 g/t Au) from 17m in BGP0089

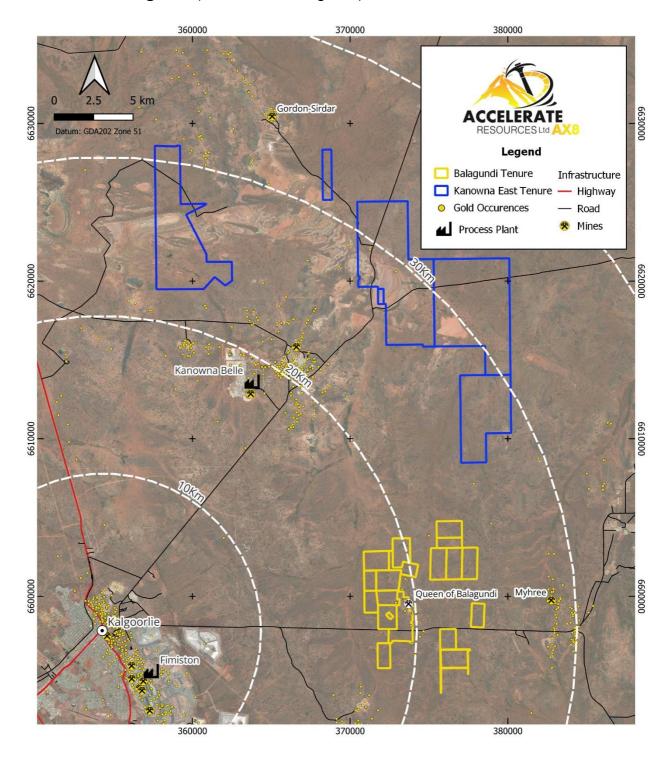


Figure 2: Balagundi and Kanowna East Projects Location Map

In addition, earlier drilling by Acacia / Eastern Goldfields Mining Company (late 1990s) along the tenement boundary of M25/173 recorded exceptional intercepts along the NW-striking Mt Bellew Trend, including:

- 24m @ 19.07 g/t Au from surface in BGP005
- 4m @ 40.36 g/t Au from 99m in BGP012
- 12m @ 15.15 g/t Au from 36m in BGP034

These results collectively highlight the potential for high-grade shoots within the Balagundi structural corridor and demonstrate continuity of gold mineralisation near surface and at depth.

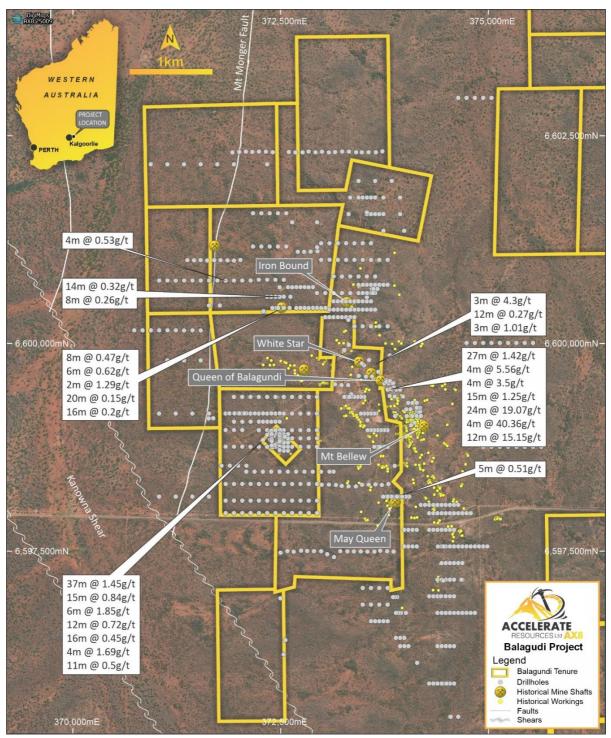


Figure 3: Balagundi Significant Drill Intercepts

Geological Context

The Balagundi Project is located within the Norseman–Wiluna greenstone belt of the Yilgarn Craton, ~20 km east of Kalgoorlie and close to Northern Star's +6Moz Kanowna Belle operation and the +70Moz KCGM Super Pit.

The tenure covers ~27 km² of north–south striking, steeply dipping porphyritic basalts, dolerite sills, sediments and felsic intrusive, a highly prospective geological setting for orogenic and intrusion-related Archaean gold systems.

Historic production of ~4,000 oz gold¹ came from narrow, high-grade quartz veins at the Queen of Balagundi and Mt Bellew mines (Figure 4). Numerous shallow shafts and workings are developed on these vein systems, with grades commonly reported between 5-30 g/t Au, and individual reefs up to 2.4 m wide³.

Gold mineralisation is controlled by north-northwest trending shears and associated tension vein arrays and stockworks, with mineralisation enhanced where these structures are crosscut by east-northeast trending faults. The Paris Gift line of lodes at Queen of Balagundi historically reached depths of ~60 m. Recent work by SensOre has highlighted a +8 km strike length of folded dolerite and basalt-sediment contact zones as the key mineralised corridor.

Despite its strong gold pedigree and proximity to Kalgoorlie, large portions of the project remain underexplored, with only limited modern exploration completed over the past 25 years. Extensive alluvial and colluvial cover across the western project area has left highly prospective zones effectively untested. Historical workings of high-grade veins along with vendor detected quartz and gossan hosted visible gold (Figure 1) further emphasise the project's discovery potential.

Figure 4 Left image – mullock pile on top of gossanous outcrop. Right image – historical workings along cross cutting veins

¹ Kelly, L.F., 1954

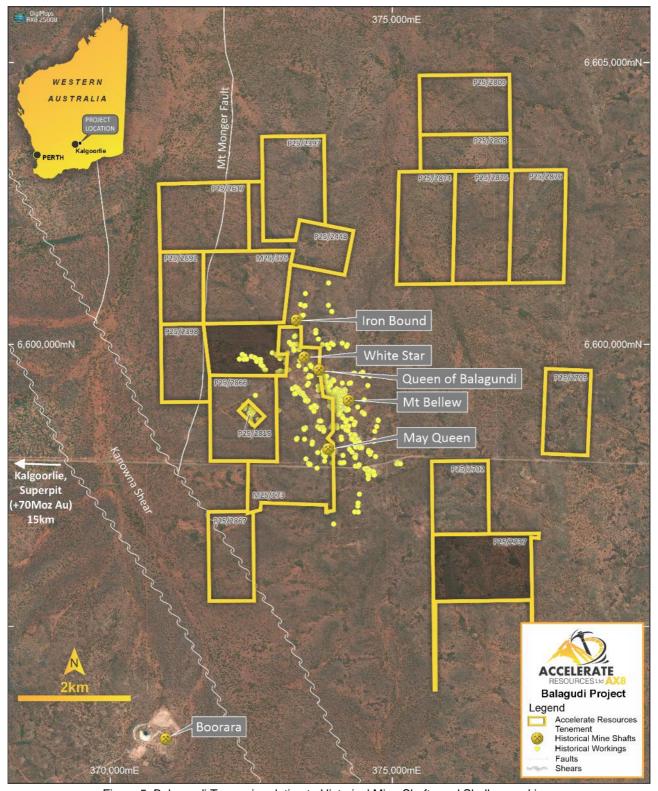


Figure 5: Balagundi Tenure in relation to Historical Mine Shafts and Shallow workings

Forward Programing

Accelerate has planned a systematic and staged exploration program designed to unlock the full potential of the Balagundi Project. Initial work will focus on detailed structural mapping and geochemical surveys, complemented by high-resolution geophysical programs, to refine priority corridors and identify concealed mineralised trends.

A detailed LiDAR survey is scheduled to be flown over the project area, providing an enhanced surface model to assist in mapping subtle geological features and locating historic artisanal workings that may be obscured at surface. This will be supported by electrical geophysical surveys, which will deliver important information on sub-surface geology and contribute to an improved understanding of mineralisation controls across the tenement package.

Following acquisition of these foundation datasets, and subject to results and interpretation, Accelerate expects to commence a program of targeted drilling between late 2025 and early 2026. This drilling will test high-grade vein and shear-hosted systems already highlighted by historic mining and recent exploration. In parallel, the Company will integrate historical datasets with new interpretations, providing a robust platform for drill targeting, resource evaluation, and the definition of future development potential.

Terms of Agreement for the Balagundi Project

Accelerate has entered into an earn-in agreement with a Third Party Individual ("Vendor") under which AX8 may earn up to an 80% interest in the Balagundi Gold Project through staged exploration expenditure.

Key terms of the agreement are as follows:

- Earn-In Expenditure: AX8 has the right to earn an 80% interest in the Balagundi Project by spending \$3 million over 48 months.
- Upfront Consideration: On execution, Vendor will receive \$45,000 in cash and 10 million AX8 shares.
- Minimum Commitment: AX8 will commit a minimum expenditure of \$500,000 within the first 12 months prior to any withdrawal.
- Annual Fee: AX8 will pay an annual fee of \$20,000 on each anniversary of the agreement during the earn-in period.
- Milestone Payments: AX8 will make non-cumulative milestone payments to Vendor (in cash or shares at AX8's election) upon publication of JORC-compliant Mineral Resource Estimates (MREs) as follows:
 - \$50,000 for a 10,000–50,000oz Au resource
 - \$100,000 for a 50,000–100,000oz Au resource
 - \$250,000 for a >100,000oz Au resource
- Free-Carry Provision: Upon completion of the earn-in, Vendor will retain a 20% freecarried interest until AX8 publishes a JORC-compliant Mineral Resource of more than 500.000oz Au.
- Additional Share Issue: Once the earn-in is completed, AX8 will issue a further 10 million AX8 shares to Vendor and the parties will contribute jointly or dilute.
- Should a joint venture partner's holding dilute below 5%, the interest will automatically convert to a 1.5% Net Smelter Return (NSR) royalty.

END	

This announcement has been produced by the Company's published continuous disclosure policy and approved by the Board.

For further information, please contact:

Luke Meter Chief Executive Officer

E: Lukem@AX8.com.au I P: +61 8 6248 9663 I W: www.AX8.com.au

Related ASX Announcements

This release contains information extracted from the following market announcements which are available on the Company website www.ax8.com.au

- 14/02/2022: S3N Balagundi Drilling Confirms Mineralised System with Size Potential
- 01/12/2021: S3N SensOre Ltd Prospectus
- 01/11/2021: S3N Drilling Commences at Histotic Balagundi Gold Mine in Kalgoorlie
- 12/01/2017: GBR Drilling continues to extend known mineralisation at Balagundi
- 9/12/2016: GBR Significant Gold Intersections at Balagundi
- 23/11/2016: GBR Operations Update Balagundi & Tarmoola

Historic Drilling Highlights

Ahmat, A, L, 1995. Geology of the Kanowna 1:100,000sheets, Western Australia, GSWA 1:100,000 Geological Series Explanatory Notes.

Kelly, L. F., 1954 List of cancelled Gold Mining Leases which have produced Gold. Department of Mines 1954.

Forward Looking Statements

Statements contained in this release, particularly those regarding possible or assumed future performance, costs, dividends, production levels or rates, prices, resources, reserves or potential growth of Accelerate Resources Limited, are, or may be, forward looking statements. Such statements relate to future events and expectations and, as such, involve known and unknown risks and uncertainties. Actual results and developments may differ materially from those expressed or implied by these forward-looking statements depending on various factors.

Competent Person Statement

Information in this release related to Exploration Results is based on information compiled by Mr Luke Meter. Mr Meter is a qualified geologist and a Member of the Australian Institute of Geoscientists (AIG) and the Australian Institute of Mining and Metallurgy (AusIMM). Mr Meter has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources, and Ore Reserves'. Mr Meter is employed by Accelerate Resources as its Chief Executive Officer and consents to the inclusion in this release of the matters based on his information in the form and context in which it appears.

APPENDIX 1:
Historical Drill Collars

Hole	Drill Type	East_MGA94	North_MGA94	RL	Dip	Azimuth	Depth (m)	Year
21BGRC001	RC	373320	6599983	405	-60	231	228	2021
21BGRC002	RC	373266	6599921	405	-60	226	150	2021
21BGRC003	RC	373503	6599738	409	-62	226	168	2021
21BGRC004	RC	373674	6599661	413	-62	227	150	2021
21BGRC005	RC	373349	6599389	411	-62	227	156	2021
21BGRC006	RC	373545	6599077	420	-61	226	150	2021
21BGRC007	RC	373873	6598527	434	-61	227	180	2021
21BGRC008	RC	373563	6599802	409	-61	228	204	2021
22BGAC001	AC	371919	6602301	372	-60	270	112	2022
22BGAC002	AC	372001	6602306	372	-60	270	82	2022
22BGAC003	AC	372081	6602309	373	-60	270	85	2022
22BGAC004	AC	372158	6602306	374	-60	270	77	2022
22BGAC005	AC	372238	6602311	374	-60	270	81	2022
22BGAC006	AC	372322	6602309	376	-60	270	86	2022
22BGAC007	AC	372405	6602303	376	-60	270	87	2022
22BGAC008	AC	372706	6601105	388	-60	270	14	2022
22BGAC009	AC	372782	6601104	390	-60	270	10	2022
22BGAC010	AC	372860	6601107	393	-60	270	66	2022
22BGAC011	AC	372943	6601111	392	-60	270	39	2022
22BGAC012	AC	373859	6597496	416	-60	90	88	2022
22BGAC013	AC	373781	6597499	416	-60	90	18	2022
22BGAC014	AC	373698	6597506	416	-60	90	32	2022
22BGAC015	AC	373628	6597495	415	-60	90	26	2022
22BGAC016	AC	373544	6597495	415	-60	90	75	2022
22BGAC017	AC	373463	6597498	415	-60	90	22	2022
22BGAC018	AC	373381	6597498	417	-60	90	2	2022
22BGAC019	AC	373303	6597498	414	-60	90	6	2022
22BGAC020	AC	373217	6597500	411	-60	90	19	2022
22BGAC021	AC	373142	6597429	408	-60	90	27	2022
22BGAC022	AC	372987	6597500	407	-60	90	28	2022
22BGAC023	AC	372900	6597501	399	-60	90	60	2022
22BGAC024	AC	372819	6597503	397	-60	90	29	2022
22BGAC025	AC	372746	6597508	397	-60	90	53	2022
22BGAC026	AC	372657	6597495	393	-60	90	30	2022
22BGAC027	AC	372581	6597502	393	-60	90	47	2022
22BGAC028	AC	372498	6597483	392	-61	90	61	2022
22BGAC029	AC	373060	6597464	408	-60	90	57	2022
22BGAC030	AC	373797	6598309	425	-60	90	34	2022
22BGAC031	AC	373718	6598298	424	-60	90	19	2022
22BGAC032	AC	373641	6598305	426	-60	90	7	2022
22BGAC033	AC	373560	6598301	421	-60	90	18	2022
22BGAC034	AC	373479	6598300	419	-60	90	20	2022

Hole	Drill Type	East_MGA94	North_MGA94	RL	Dip	Azimuth	Depth (m)	Year
22BGAC035	AC	373405	6598280	421	-60	90	12	2022
22BGAC036	AC	373316	6598281	417	-60	90	3	2022
22BGAC037	AC	373235	6598286	412	-60	90	9	2022
22BGAC038	AC	373165	6598298	410	-60	90	53	2022
22BGAC039	AC	373080	6598302	410	-60	90	72	2022
22BGAC040	AC	372994	6598300	410	-60	90	102	2022
22BGAC041	AC	373312	6599500	409	-60	90	54	2022
22BGAC042	AC	373233	6599500	409	-60	90	40	2022
22BGAC043	AC	373154	6599509	410	-60	90	20	2022
22BGAC044	AC	373440	6599611	406	-60	90	4	2022
22BGAC045	AC	373600	6599603	417	-60	90	51	2022
22BGAC046	AC	373525	6599602	414	-60	90	66	2022
22BGAC047	AC	372015	6601006	383	-60	90	88	2022
22BGAC048	AC	371938	6600998	379	-60	90	56	2022
22BGAC049	AC	371860	6601001	379	-60	90	81	2022
22BGAC050	AC	371776	6601003	378	-60	90	96	2022
22BGAC051	AC	371700	6601003	372	-60	90	109	2022
22BGAC052	AC	371616	6601000	372	-60	90	86	2022
22BGAC053	AC	371536	6601005	377	-60	90	83	2022
22BGAC054	AC	371457	6601002	376	-60	90	73	2022
22BGAC055	AC	371377	6601004	374	-60	90	80	2022
22BGAC067	AC	372598	6602306	378	-60	270	71	2022
22BGAC068	AC	372678	6602300	377	-60	270	77	2022
22BGAC069	AC	372763	6602301	382	-60	270	42	2022
22BGAC070	AC	372836	6602311	375	-60	270	52	2022
22BGAC071	AC	372919	6602302	378	-60	270	44	2022
22BGAC072	AC	372997	6602309	379	-60	270	36	2022
22BGAC073	AC	373079	6602301	384	-60	270	32	2022
22BGAC074	AC	373155	6602305	385	-60	270	51	2022
22BGAC075	AC	373240	6602311	387	-60	270	4	2022
22BGAC076	AC	373322	6602310	397	-60	270	29	2022
22BGAC077	AC	373408	6602303	393	-60	270	3	2022
22BGAC078	AC	373476	6602302	397	-60	270	10	2022
22BGAC079	AC	373558	6602303	401	-60	270	46	2022
22BGAC080	AC	373646	6602303	398	-60	270	56	2022
22BGAC081	AC	373724	6602314	399	-60	270	68	2022
BAR113	RAB	374137	6599177	380	-90	0	89	1997
BAR114	RAB	374157	6599177	380	-90	0	86	1997
BAR115	RAB	374177	6599177	380	-90	0	50	1997
BAR116	RAB	374177	6599227	380	-90	0	57	1997
BAR117	RAB	374157	6599227	380	-90	0	69	1997
BAR118	RAB	374137	6599227	380	-90	0	74	1997
BARC021	RC	373890	6599445	380	-60	270	167	1997
BARC022	RC	373872	6599361	380	-60	270	150	1997
BARC023	RC	373972	6599361	380	-60	270	150	1997

Hole	Drill Type	East_MGA94	North_MGA94	RL	Dip	Azimuth	Depth (m)	Year
BARC024	RC	374085	6599127	380	-60	270	150	1997
BARC025	RC	374137	6599128	380	-60	270	150	1997
BARC026	RC	374186	6599127	380	-60	270	153	1997
BARC027	RC	374035	6599286	380	-60	270	150	1997
BARC028	RC	374086	6599286	380	-60	270	156	1997
BARC029	RC	374136	6599286	380	-60	270	150	1997
BARC030	RC	373748	6599519	380	-60	270	150	1997
BARC031	RC	373798	6599520	380	-60	270	150	1997
BARC033	RC	373815	6599857	380	-60	270	114	1997
BARC034	RC	373862	6599525	380	-60	270	72	1997
BARC035	RC	373860	6599525	380	-60	270	150	1997
BARC036	RC	373787	6599445	380	-60	270	150	1997
BARC037	RC	373937	6599445	380	-60	270	156	1997
BARC038	RC	373812	6599368	380	-60	270	120	1997
BARC039	RC	374062	6599207	380	-60	90	150	1997
BARC040	RC	374012	6599207	380	-60	90	150	1997
BARC041	RC	374017	6599127	380	-60	270	156	1997
BARC042	RC	373877	6599127	380	-60	90	156	1997
BDD1	DD	373497	6599782	406	-60	225	133	1987
BDD2	DD	372397	6598840	398	-60	0	115	1987
BER001	RAB	373537	6601558	380	-90	0	18	1998
BER002	RAB	373587	6601558	380	-90	0	51	1998
BER003	RAB	373637	6601558	380	-90	0	63	1998
BER004	RAB	373687	6601558	380	-90	0	81	1998
BER005	RAB	373737	6601558	380	-90	0	58	1998
BER006	RAB	373337	6601758	380	-90	0	5	1998
BER007	RAB	373437	6601758	380	-90	0	2	1998
BER008	RAB	373487	6601758	380	-90	0	23	1998
BER009	RAB	373537	6601758	380	-90	0	28	1998
BER010	RAB	373587	6601758	380	-90	0	53	1998
BER011	RAB	373637	6601758	380	-90	0	41	1998
BGR10	RAB	373953	6598158	427	-60	90	59	1991
BGR10	RAB	373946	6598157	400	-60	90	59	1991
BGR11	RAB	373786	6598757	400	-60	90	11	1991
BGR12	RAB	373746	6598757	400	-60	90	51	1991
BGR13	RAB	373706	6598757	400	-60	90	55	1991
BGR14	RAB	373692	6598758	424	-60	90	58	1991
BGR14	RAB	373666	6598757	400	-60	90	58	1991
BGR15	RAB	373626	6598757	400	-60	90	48	1991
BGR16	RAB	373786	6598957	400	-60	90	51	1991
BGR17	RAB	373746	6598957	400	-60	90	45	1991
BGR18	RAB	373706	6598957	400	-60	90	51	1991
BGR19	RAB	373666	6598957	400	-60	90	30	1991
BGR2	RAB	374006	6598157	400	-60	90	51	1991
BGR20	RAB	373626	6598957	400	-60	90	15	1991

Hole	Drill Type	East_MGA94	North_MGA94	RL	Dip	Azimuth	Depth (m)	Year
BGR21	RAB	373586	6598957	400	-60	90	23	1991
BGR22	RAB	373546	6598957	400	-60	90	7	1991
BGR23	RAB	373651	6599157	400	-60	90	27	1991
BGR24	RAB	373626	6599157	400	-60	90	39	1991
BGR25	RAB	373586	6599157	400	-60	90	36	1991
BGR26	RAB	373546	6599157	400	-60	90	56	1991
BGR27	RAB	373506	6599157	400	-60	90	54	1991
BGR28	RAB	373466	6599157	400	-60	90	42	1991
BGR29	RAB	373506	6599357	400	-60	90	24	1991
BGR3	RAB	373966	6598157	400	-60	90	38	1991
BGR30	RAB	373466	6599357	400	-60	90	22	1991
BGR31	RAB	373426	6599357	400	-60	90	37	1991
BGR32	RAB	373386	6599357	400	-60	90	31	1991
BGR33	RAB	373346	6599357	400	-60	90	43	1991
BGR34	RAB	373326	6599358	413	-60	90	57	1991
BGR34	RAB	373306	6599357	400	-60	90	57	1991
BGR35	RAB	373266	6599357	400	-60	90	39	1991
BGR36	RAB	373315	6600285	400	0	0	57	1991
BGR37	RAB	373087	6598458	413	-90	0	46	1991
BGR37	RAB	373086	6598457	400	0	0	46	1991
BGR38	RAB	372986	6598457	400	0	0	78	1991
BGR39	RAB	372886	6598457	400	0	0	57	1991
BGR4	RAB	373926	6598157	400	-60	90	32	1991
BGR40	RAB	372786	6598457	400	0	0	55	1991
BGR41	RAB	372686	6598457	400	0	0	60	1991
BGR42	RAB	372586	6598457	400	0	0	51	1991
BGR43	RAB	372486	6598457	400	0	0	50	1991
BGR44	RAB	372386	6598457	400	0	0	57	1991
BGR45	RAB	372286	6598457	400	0	0	50	1991
BGR46	RAB	372186	6598457	400	0	0	54	1991
BGR47	RAB	372086	6598457	400	0	0	84	1991
BGR48	RAB	373136	6598457	400	0	0	24	1991
BGR5	RAB	373886	6598157	400	-60	90	39	1991
BGR6	RAB	373846	6598157	400	-60	90	37	1991
BGR7	RAB	373806	6598157	400	-60	90	52	1991
BGR8	RAB	373766	6598157	400	-60	90	59	1991
BGR9	RAB	373726	6598157	400	-60	90	55	1991
BHAC001	AC	371689	6599101	388	-60	90	89	2012
BHAC002	AC	371633	6599098	388	-60	90	107	2012
BHR001	RAB	371937	6599357	380	-90	0	47	1998
BHR002	RAB	372037	6599357	380	-90	0	57	1998
BHR003	RAB	372137	6599357	380	-90	0	108	1998
BHR004	RAB	372237	6599357	380	-90	0	106	1998
BHR005	RAB	372337	6599357	380	-90	0	59	1998
BHR006	RAB	372437	6599357	380	-90	0	80	1998

Hole	Drill Type	East_MGA94	North_MGA94	RL	Dip	Azimuth	Depth (m)	Year
BHR007	RAB	372537	6599357	380	-90	0	90	1998
BHR008	RAB	372637	6599357	380	-90	0	65	1998
BHR009	RAB	372737	6599357	380	-90	0	65	1998
BHR010	RAB	372837	6599357	380	-90	0	40	1998
BHR011	RAB	372937	6599357	380	-90	0	34	1998
BHR012	RAB	371837	6599157	380	-90	0	81	1998
BHR013	RAB	371937	6599157	380	-90	0	42	1998
BHR014	RAB	372037	6599157	380	-90	0	33	1998
BHR015	RAB	372137	6599157	380	-90	0	42	1998
BHR016	RAB	372237	6599157	380	-90	0	53	1998
BHR017	RAB	372337	6599157	380	-90	0	60	1998
BHR018	RAB	372437	6599157	380	-90	0	45	1998
BHR019	RAB	372537	6599157	380	-90	0	35	1998
BHR020	RAB	372637	6599157	380	-90	0	22	1998
BHR021	RAB	372737	6599157	380	-90	0	22	1998
BHR022	RAB	372837	6599157	380	-90	0	53	1998
BHR023	RAB	372937	6599157	380	-90	0	58	1998
BHR025	RAB	372237	6598957	380	-90	0	15	1998
BHR026	RAB	372337	6598957	380	-90	0	50	1998
BHR027	RAB	372437	6598957	380	-90	0	54	1998
BHR028	RAB	372537	6598957	380	-90	0	17	1998
BHR029	RAB	372637	6598957	380	-90	0	43	1998
BHR030	RAB	372737	6598957	380	-90	0	30	1998
BHR031	RAB	372837	6598957	380	-90	0	49	1998
BHR032	RAB	372937	6598957	380	-90	0	71	1998
BHR033	RAB	372137	6598757	380	-90	0	40	1998
BHR034	RAB	372237	6598757	380	-90	0	57	1998
BHR035	RAB	372337	6598757	380	-90	0	59	1998
BHR036	RAB	372437	6598757	380	-90	0	37	1998
BHR037	RAB	372537	6598757	380	-90	0	28	1998
BHR038	RAB	372637	6598757	380	-90	0	52	1998
BHR039	RAB	372737	6598757	380	-90	0	39	1998
BHR040	RAB	372837	6598757	380	-90	0	46	1998
BHR041	RAB	372937	6598757	380	-90	0	30	1998
BHR042	RAB	372487	6598807	380	-90	0	69	1998
BHR043	RAB	372537	6598807	380	-90	0	24	1998
BHR044	RAB	372537	6598857	380	-90	0	18	1998
BHR045	RAB	372537	6598907	380	-90	0	43	1998
BHR046	RAB	371837	6597957	400	-90	0	65	1998
BHR047	RAB	371937	6597957	400	-90	0	63	1999
BHR048	RAB	372037	6597957	400	-90	0	61	1999
BHR049	RAB	372137	6597957	400	-90	0	78	1999
BHR050	RAB	372237	6597957	400	-90	0	92	1999
BHR051	RAB	372337	6597957	400	-90	0	65	1999
BHR052	RAB	372437	6597957	400	-90	0	85	1999

Hole	Drill Type	East_MGA94	North_MGA94	RL	Dip	Azimuth	Depth (m)	Year
BHR053	RAB	372537	6597957	400	-90	0	99	1999
BHR054	RAB	372637	6597957	400	-90	0	33	1999
BHR055	RAB	372737	6597957	400	-90	0	82	1999
BHR056	RAB	372837	6597957	400	-90	0	66	1999
BHR057	RAB	372937	6597957	400	-90	0	80	1999
BHR058	RAB	371837	6598107	400	-90	0	64	1999
BHR059	RAB	371937	6598107	400	-90	0	76	1999
BHR060	RAB	372037	6598107	400	-90	0	90	1999
BHR061	RAB	372037	6598107	400	-90	0	75	1999
BHR062	RAB	372137	6598107	400	-90	0	98	1999
BHR063	RAB	372237	6598107	400	-90	0	67	1999
BHR064	RAB	372337	6598107	400	-90	0	82	1999
BHR065	RAB	372537	6598107	400	-90	0	98	1999
BHR066	RAB	372637	6598107	400	-90	0	105	1999
BHR067	RAB	372737	6598107	400	-90	0	93	1999
BHR068	RAB	372837	6598107	400	-90	0	79	1999
BHR069	RAB	372937	6598107	400	-90	0	84	1999
BHR070	RAB	371837	6598307	400	-90	0	92	1999
BHR071	RAB	371937	6598307	400	-90	0	80	1999
BHR072	RAB	372037	6598307	400	-90	0	93	1999
BHR073	RAB	372137	6598307	400	-90	0	90	1999
BHR074	RAB	372237	6598307	400	-90	0	89	1999
BHR075	RAB	372337	6598307	400	-90	0	79	1999
BHR076	RAB	372437	6598307	400	-90	0	100	1999
BHR077	RAB	372537	6598307	400	-90	0	98	1999
BHR078	RAB	372637	6598307	400	-90	0	114	1999
BHR079	RAB	372737	6598307	400	-90	0	104	1999
BHR080	RAB	372837	6598307	400	-90	0	96	1999
BHR081	RAB	372937	6598307	400	-90	0	71	1999
BHR082	RAB	371787	6598527	400	-90	0	102	1999
BHR083	RAB	371887	6598527	400	-90	0	85	1999
BHR084	RAB	371987	6598527	400	-90	0	101	1999
BHR085	RAB	372087	6598527	400	-90	0	89	1999
BHR086	RAB	371837	6598757	400	-90	0	108	1999
BHR087	RAB	371937	6598757	400	-90	0	82	1999
BHR088	RAB	372037	6598757	400	-90	0	60	1999
BHR089	RAB	371837	6598957	400	-90	0	57	1999
BHR090	RAB	371937	6598957	400	-90	0	36	1999
BHR091	RAB	372037	6598957	400	-90	0	31	1999
BHR092	RAB	372487	6598707	400	-90	0	59	1999
BHR093	RAB	372537	6598707	400	-90	0	64	1999
BHR094	RAB	372587	6598707	400	-90	0	88	1999
BHR095	RAB	372587	6598757	400	-90	0	88	1999
BHR096	RAB	372587	6598807	400	-90	0	61	1999
BHR097	RAB	372587	6598857	400	-90	0	64	1999

Hole	Drill Type	East_MGA94	North_MGA94	RL	Dip	Azimuth	Depth (m)	Year
BHR098	RAB	372637	6598857	400	-90	0	28	1999
BHR099	RAB	372737	6598857	400	-90	0	49	1999
BHR100	RAB	372837	6598857	400	-90	0	65	1999
BHR101	RAB	372937	6598857	400	-90	0	58	1999
BHR102	RAB	372587	6598907	400	-90	0	51	1999
BHR103	RAB	371937	6599057	400	-90	0	40	1999
BHR104	RAB	372037	6599057	400	-90	0	28	1999
BHR105	RAB	372137	6599057	400	-90	0	13	1999
BHR106	RAB	372237	6599057	400	-90	0	27	1999
BHR107	RAB	372287	6599057	400	-90	0	36	1999
BHR108	RAB	372337	6599057	400	-90	0	47	1999
BHR109	RAB	372387	6599057	400	-90	0	67	1999
BHR110	RAB	372437	6599057	400	-90	0	37	1999
BHR111	RAB	372487	6599057	400	-90	0	34	1999
BHR112	RAB	371987	6599157	400	-90	0	43	1999
BHR113	RAB	372087	6599157	400	-90	0	42	1999
BHR114	RAB	372187	6599157	400	-90	0	45	1999
BHR115	RAB	372287	6599157	400	-90	0	70	1999
BHR116	RAB	372387	6599157	400	-90	0	55	1999
BHR117	RAB	372487	6599157	400	-90	0	39	1999
BHRC001	RC	372447	6598787	400	-60	45	130	1999
BHRC002	RC	372497	6598827	400	-60	45	123	1999
BHRC003	RC	372537	6598867	400	-60	45	138	1999
BHRC004	RC	372367	6598837	400	-60	45	130	1999
BHRC005	RC	372407	6598877	400	-60	45	132	1999
BHRC006	RC	372452	6598917	400	-60	45	130	1999
BHRC007	RC	372397	6598747	400	-60	45	166	1999
BHRC008	RC	371882	6599157	400	-60	90	124	1999
BHRC009	RC	371942	6599157	400	-60	90	130	1999
BHRC010	RC	372002	6599157	400	-60	90	130	1999
BHRC011	RC	372062	6599157	400	-60	90	130	1999
BNA003	AC	371768	6600458	381	-90	0	83	1996
BNA006	AC	371637	6600458	382	-90	0	79	1996
BNA009	AC	371037	6600757	380	-90	0	70	1998
BNA010	AC	371137	6600757	380	-90	0	55	1998
BNA011	AC	371237	6600757	380	-90	0	71	1998
BNA012	AC	371337	6600757	380	-90	0	59	1998
BNA013	AC	371437	6600757	380	-90	0	79	1998
BNA014	AC	371537	6600757	380	-90	0	70	1998
BNA015	AC	371637	6600757	380	-90	0	85	1998
BNA016	AC	371737	6600757	380	-90	0	87	1998
BNA017	AC	371837	6600757	380	-90	0	59	1998
BNA018	AC	371937	6600757	380	-90	0	63	1998
BNA019	AC	372037	6600757	380	-90	0	100	1998
BNA020	AC	372137	6600757	380	-90	0	86	1998

Hole	Drill Type	East_MGA94	North_MGA94	RL	Dip	Azimuth	Depth (m)	Year
BNA021	AC	372237	6600767	400	-90	0	111	1999
BNA022	AC	372337	6600767	400	-90	0	111	1999
BNA023	AC	372437	6600767	400	-90	0	92	1999
BNA024	AC	372537	6600767	400	-90	0	106	1999
BNA025	AC	372167	6601167	400	-90	0	95	1999
BNA026	AC	372267	6601167	400	-90	0	101	1999
BNA027	AC	372367	6601167	400	-90	0	96	1999
BNA028	AC	372467	6601167	400	-90	0	90	1999
BNA029	AC	372567	6601167	400	-90	0	82	1999
BNA030	AC	372167	6601568	400	-90	0	88	1999
BNA031	AC	372267	6601568	400	-90	0	82	1999
BNA032	AC	372367	6601568	400	-90	0	76	1999
BNA033	AC	372467	6601568	400	-90	0	95	1999
BNA034	AC	372567	6601568	400	-90	0	97	1999
BNR007	RAB	372737	6600427	380	-60	270	65	1997
BNR008	RAB	372787	6600427	380	-60	270	69	1997
BNR009	RAB	372737	6600427	380	-60	270	76	1997
BNR010	RAB	372887	6600427	380	-60	270	72	1997
BNR011	RAB	372937	6600427	380	-60	270	49	1997
BNR012	RAB	372987	6600427	380	-60	270	81	1997
BNR013	RAB	373037	6600427	380	-60	270	96	1997
BNR014	RAB	373037	6600562	380	-60	270	116	1997
BNR015	RAB	372337	6600562	380	-60	270	70	1997
BNR016	RAB	372387	6600562	380	-60	270	107	1997
BNR017	RAB	372437	6600562	380	-60	270	75	1997
BNR018	RAB	372537	6600562	380	-60	270	67	1997
							90	
BNR019	RAB	372587	6600677 6600677	380 380	-60 -60	270 270	75	1997
BNR020	RAB	372637						1997
BNR021	RAB	372687	6600677	380	-60	270	79	1997
BNR022	RAB	372737 372787	6600677	380	-60	270	33	1997
BNR023	RAB		6600677 6600677	380	-60	270	97	1997
BNR024	RAB	372837		380	-60	270	85	1997
BNR025	RAB	372887	6600677	380	-60	270	68	1997
BNR026	RAB	372937	6601157	380	-60	270	25	1997
BNR027	RAB	372937	6601458	380	-60	270	38	1997
BNR028	RAB	372637	6601458	380	-60	270	92	1997
BNR029	RAB	373087	6601007	380	-60	270	53	1997
BNR030	RAB	372987	6601207	400	-90	0	41	1997
BNR031	RAB	373087	6601207	400	-90	0	36	1997
BNR032	RAB	372987	6601007	400	-90	0	36	1997
BNR033	RAB	372937	6600607	400	-90	0	7	1997
BNR034	RAB	373037	6600607	400	-90	0	15	1997
BNRC001	RC	372294	6600387	388	-60	270	150	1996
BNRC002	RC	372497	6600429	389	-60	90	160	1996
BNRC003	RC	372608	6600429	391	-60	270	154	1996

Hole	Drill Type	East_MGA94	North_MGA94	RL	Dip	Azimuth	Depth (m)	Year
BNRC004	RC	372640	6600563	390	-60	270	130	1996
BNRC005	RC	372487	6600677	389	-60	270	120	1996
BNRC006	RC	372687	6600427	380	-60	270	150	1996
BNRC007	RC	372447	6600427	380	-60	90	150	1997
BNRC008	RC	372397	6600427	380	-60	90	148	1997
BOA049	AC	371607	6599658	382	-90	0	90	1999
BOA050	AC	371707	6599658	384	-90	0	107	1999
BRA001	AC	370737	6600157	400	-90	0	71	1999
BRA002	AC	370837	6600157	400	-90	0	75	1999
BRA003	AC	370937	6600157	400	-90	0	63	1999
BRA004	AC	371037	6600157	400	-90	0	83	1999
BRA005	AC	371137	6600157	400	-90	0	96	1999
BRA006	AC	371237	6600157	400	-90	0	102	1999
BRA007	AC	371337	6600157	400	-90	0	95	1999
BRA008	AC	371437	6600157	400	-90	0	77	1999
BRA009	AC	371537	6600157	400	-90	0	75	1999
BTR001	RAB	373637	6600657	380	-60	90	61	1993
BTR002	RAB	373597	6600657	380	-60	90	45	1993
BTR003	RAB	373587	6600607	380	-60	90	49	1993
BTR004	RAB	373537	6600557	380	-60	90	55	1993
BTR005	RAB	373137	6600607	380	-90	0	11	1998
BTR006	RAB	373237	6600607	380	-90	0	26	1998
BTR007	RAB	373337	6600607	380	-90	0	48	1998
BTR008	RAB	373437	6600607	380	-90	0	43	1998
BTR009	RAB	373537	6600607	380	-90	0	54	1998
BTR010	RAB	373637	6600607	380	-90	0	64	1998
BTR011	RAB	373137	6600807	380	-90	0	13	1998
BTR012	RAB	373237	6600807	380	-90	0	23	1998
BTR013	RAB	373337	6600807	380	-90	0	36	1998
BTR014	RAB	373437	6600807	380	-90	0	44	1998
BTR015	RAB	373537	6600807	380	-90	0	48	1998
BTR016	RAB	373637	6600807	380	-90	0	43	1998
BTR017	RAB	373187	6601007	380	-90	0	5	1998
BTR018	RAB	373287	6601007	380	-90	0	18	1998
BTR019	RAB	373387	6601007	380	-90	0	25	1998
BTR020	RAB	373487	6601007	380	-90	0	40	1998
BTR021	RAB	373587	6601007	380	-90	0	67	1998
BTR022	RAB	373687	6601007	380	-90	0	48	1998
BTR023	RAB	373787	6601007	380	-90	0	46	1998
BTR024	RAB	373187	6601207	380	-90	0	15	1998
BTR025	RAB	373287	6601207	380	-90	0	32	1998
BTR026	RAB	373387	6601207	380	-90	0	46	1998
BTR027	RAB	373487	6601207	380	-90	0	42	1998
BTR028	RAB	373587	6601207	380	-90	0	47	1998
BTR030	RAB	373137	6600407	380	-90	0	28	1998

Hole	Drill Type	East_MGA94	North_MGA94	RL	Dip	Azimuth	Depth (m)	Year
BTR031	RAB	373237	6600407	380	-90	0	43	1998
BTR032	RAB	373337	6600407	380	-90	0	45	1998
BTR033	RAB	373437	6600407	380	-90	0	55	1998
BTR034	RAB	373487	6600407	380	-90	0	58	1998
BTR035	RAB	373537	6600407	380	-90	0	49	1998
BTR036	RAB	373587	6600407	380	-90	0	49	1998
BTR037	RAB	373637	6600407	380	-90	0	43	1998
BTR038	RAB	373387	6600207	380	-90	0	55	1998
BTR039	RAB	373487	6600207	380	-90	0	42	1998
BTR040	RAB	373587	6600207	380	-90	0	39	1998
BTR041	RAB	373687	6600207	380	-90	0	70	1998
BTR042	RAB	373787	6600207	380	-90	0	59	1998
BTR043	RAB	373437	6600707	380	-90	0	33	1998
BTR044	RAB	373487	6600707	380	-90	0	40	1998
BTR045	RAB	373537	6600707	380	-90	0	48	1998
BTR046	RAB	373587	6600707	380	-90	0	49	1998
BTR047	RAB	373637	6600707	380	-90	0	41	1998
BTR048	RAB	373687	6600707	380	-90	0	28	1998
BTR049	RAB	373737	6600707	380	-90	0	26	1998
BTR050	RAB	373787	6600707	380	-90	0	24	1998
BTR051	RAB	373487	6600607	380	-90	0	50	1998
BTR052	RAB	373137	6600507	380	-90	0	21	1998
BTR053	RAB	373187	6600507	380	-90	0	22	1998
BTR054	RAB	373237	6600507	380	-90	0	17	1998
BTR055	RAB	373287	6600507	380	-90	0	38	1998
BTR056	RAB	373337	6600507	380	-90	0	37	1998
BTR057	RAB	373387	6600507	380	-90	0	35	1998
BTR058	RAB	373437	6600507	380	-90	0	47	1998
BTR059	RAB	373487	6600507	380	-90	0	54	1998
BTR060	RAB	373537	6600507	380	-90	0	55	1998
BTR061	RAB	373587	6600507	380	-90	0	55	1998
BTR062	RAB	373087	6600407	380	-90	0	65	1998
BTR063	RAB	373187	6600407	380	-90	0	3	1998
BTR064	RAB	373287	6600407	380	-90	0	52	1998
BTR065	RAB	373387	6600407	380	-90	0	49	1998
BTR066	RAB	373037	6600317	380	-90	0	62	1998
BTR067	RAB	373087	6600317	380	-90	0	30	1998
BTR068	RAB	373137	6600317	380	-90	0	58	1998
BTR069	RAB	373187	6600317	380	-90	0	41	1998
BTR070	RAB	373237	6600317	380	-90	0	32	1998
BTR071	RAB	373287	6600317	380	-90	0	47	1998
BTR072	RAB	373337	6600317	380	-90	0	54	1998
BTR073	RAB	373387	6600317	380	-90	0	56	1998
HKRC001	RC	372484	6598807	399	-90	71	120	2008
HKRC002	RC	372364	6598881	398	-60	0	150	2008
TINNCUUZ	nC .	372304	0020001	330	-00	U	130	2008

Hole	Drill Type	East_MGA94	North_MGA94	RL	Dip	Azimuth	Depth (m)	Year
MYR001	RAB	374637	6602958	400	-90	0	45	2000
MYR002	RAB	374737	6602958	400	-90	0	60	2000
MYR003	RAB	374837	6602958	400	-90	0	55	2000
MYR004	RAB	374937	6602958	400	-90	0	70	2000
MYR005	RAB	375037	6602958	400	-90	0	74	2000
R3/5	RAB	372287	6598840	398	-60	0	26	1987
R6/2	RAB	372388	6598949	398	-60	0	45	1987
R6/4	RAB	372387	6598883	398	-60	0	45	1987
R6/5	RAB	372387	6598869	398	-60	0	45	1987
R6/7	RAB	372387	6598825	398	-60	0	45	1987
R7/1	RAB	372392	6598911	398	-60	0	45	1987
R7/3	RAB	372393	6598858	398	-60	0	45	1987
R7/4	RAB	372392	6598849	398	-60	0	42	1987
R7/5	RAB	372392	6598820	398	-60	0	40	1987
R7/6	RAB	372393	6598767	397	-60	0	40	1987
R8/1	RAB	372488	6598918	399	-60	0	32	1987
R8/2	RAB	372488	6598883	399	-60	0	45	1987
R8/3	RAB	372487	6598863	399	-60	0	45	1987
R8/4	RAB	372487	6598837	399	-60	0	31	1987
R8/5	RAB	372487	6598813	399	-60	0	36	1987
R8/6	RAB	372487	6598758	399	-60	0	44	1987
R8/7	RAB	372487	6598709	399	-60	0	45	1987

APPENDIX 2: Significant Drill Hole Intercepts > 0.1 g/t Au Assays

Hole	From(m)	To (m)	Width (m)	Grade (g/t Au)	Comment
21BGRC001	73	76	3	0.43	
21BGRC001	108	109	1	0.16	
21BGRC001	140	141	1	0.11	
21BGRC002	12	16	4	0.18	
21BGRC002	20	28	8	0.22	
21BGRC002	33	36	3	0.39	
21BGRC002	48	51	3	0.41	
21BGRC002	49	50	1	0.85	
21BGRC002	114	119	5	0.11	
21BGRC003	0	4	4	0.13	
21BGRC003	16	23	7	0.15	
21BGRC003	29	36	7	0.31	
21BGRC003	44	51	7	0.15	
21BGRC003	62	71	9	0.18	
21BGRC003	138	139	1	0.42	
21BGRC003	152	153	1	0.1	
21BGRC003	159	166	7	0.34	
21BGRC004	0	2	2	0.28	
21BGRC004	83	84	1	0.32	
21BGRC004	88	89	1	0.15	
21BGRC004	96	97	1	5.38	
21BGRC004	114	130	16	0.81	
including			5	1.71	from 114m
and			1	2.46	from 127m
21BGRC005	0	4	4	0.13	
21BGRC005	16	23	7	0.54	
including			1	1.12	from 119m
21BGRC005	49	50	1	0.2	
21BGRC005	121	128	7	0.14	
21BGRC005	137	148	11	0.18	
21BGRC006	130	131	1	0.12	
21BGRC007	16	20	4	0.11	
21BGRC007	42	52	10	0.19	
21BGRC007	72	76	4	0.11	

Hole	From(m)	To (m)	Width (m)	Grade (g/t Au)	Comment
21BGRC007	114	115	1	0.39	
21BGRC007	123	124	1	0.23	
21BGRC008	152	154	2	0.13	
21BGRC008	157	159	2	0.21	
21BGRC008	189	190	1	0.15	
22BGAC012	84	87	3	0.1	
22BGAC033	15	16	1	0.19	
22BGAC042	18	19	1	0.39	
22BGAC045	0	9	9	0.81	
including			7	1.01	from 0m
22BGAC045	13	37	24	0.48	
including	13	17	4	2.03	from 13m
22BGAC046	13	14	1	0.11	
22BGAC046	27	28	1	0.36	
22BGAC046	35	47	12	0.24	
22BGAC050	4	5	1	0.1	
22BGAC067	28	32	4	0.1	
22BGRC012	34	36	2	1.2	
BDD1	0	3	3	0.51	
BDD1	20	21	1	0.27	
BDD1	60	63	3	4.30	
BDD1	81	84	3	1.01	
BDD1	89	90	1	0.31	
BDD1	104	105	1	0.22	
BDD1	108	111	3	0.23	
BDD1	118	130	12	0.27	
BDD2	2	3	1	0.13	
BDD2	11	26	15	0.84	
BDD2	48	60	12	0.72	
BDD2	65	72	7	0.18	
BDD2	78	79	1	0.32	
BDD2	85	88	3	0.11	
BGR10	10	15	5	0.21	
BGR10	30	35	5	0.51	
BGR14	45	50	5	0.13	
BGR34	35	40	5	0.12	
BGR37	45	46	1	0.30	EOH
	l		I	I	

Hole	From(m)	To (m)	Width (m)	Grade (g/t Au)	Comment
BGR5	20	25	5	0.11	
BGR7	20	25	5	0.11	
BGR7	50	52	2	0.49	ЕОН
BGR8	35	40	5	0.21	
BGR8	45	50	5	0.10	
BGR9	15	20	5	0.17	
BGR9	45	50	5	0.14	
BHAC001	4	8	4	0.10	
BHAC002	4	8	4	0.15	
BHR027	14	15	1	0.46	
BHR027	18	20	2	0.33	
BHR027	38	39	1	0.17	
BHR027	49	53	4	0.22	
BHR037	16	17	1	0.43	
BHR042	24	28	4	1.69	
BHR042	32	69	37	1.45	ЕОН
BHR043	8	9	1	0.12	
BHR043	14	24	10	0.43	ЕОН
BHR045	0	7	7	0.14	
BHR045	11	13	2	0.32	
BHR045	17	18	1	0.21	
BHR045	23	31	8	0.40	
BHR092	29	30	1	0.20	
BHR092	54	56	2	0.44	
BHR097	32	34	2	0.57	
BHR097	42	48	6	0.53	
BHRC001	22	24	2	0.21	
BHRC001	32	38	6	0.12	
BHRC001	52	78	26	0.19	
BHRC002	16	20	4	0.73	
BHRC002	32	36	4	0.23	
BHRC002	48	52	4	0.29	
BHRC002	68	70	2	0.14	
BHRC002	86	90	4	0.15	
BHRC002	102	104	2	0.19	
BHRC003	0	4	4	0.21	
BHRC003	16	18	2	0.21	

Hole	From(m)	To (m)	Width (m)	Grade (g/t Au)	Comment
BHRC003	22	24	2	0.26	
BHRC003	30	36	6	1.85	
BHRC003	42	48	6	0.14	
BHRC003	54	66	12	0.20	
BHRC003	108	112	4	0.22	
BHRC003	124	132	8	0.29	
BHRC004	0	4	4	0.19	
BHRC004	8	10	2	0.42	
BHRC004	26	28	2	0.24	
BHRC004	46	48	2	0.17	
BHRC004	56	58	2	0.19	
BHRC004	76	78	2	0.41	
BHRC004	98	104	6	0.19	
BHRC004	118	120	2	0.22	
BHRC005	0	2	2	0.18	
BHRC005	12	18	6	0.15	
BHRC005	22	26	4	0.56	
BHRC005	32	34	2	0.53	
BHRC005	50	66	16	0.45	
BHRC005	72	74	2	0.32	
BHRC005	80	86	6	0.32	
BHRC006	0	2	2	0.16	
BHRC006	64	66	2	0.14	
BHRC006	72	74	2	0.18	
BHRC006	78	86	8	0.12	
BHRC006	90	98	8	0.19	
BHRC006	118	120	2	0.29	
BHRC006	126	130	4	0.19	ЕОН
BHRC007	84	86	2	0.51	
BHRC007	134	136	2	0.10	
BNA003	0	4	4	0.12	
BNA006	0	4	4	0.11	
BNA011	64	71	7	0.20	ЕОН
BNA017	40	44	4	0.53	
BNR009	16	24	8	0.13	
BNR012	76	80	4	0.19	
BNR014	0	12	12	0.14	

Hole	From(m)	To (m)	Width (m)	Grade (g/t Au)	Comment
BNR015	0	8	8	0.19	
BNR016	0	4	4	0.14	
BNR016	64	68	4	0.18	
BNR017	48	56	8	0.26	
BNR020	72	75	3	0.31	ЕОН
BNR024	72	76	4	0.10	
BNRC001	0	4	4	0.16	
BNRC002	0	4	4	0.13	
BNRC002	12	28	16	0.20	
BNRC002	36	42	6	0.62	
BNRC002	58	60	2	0.66	
BNRC002	82	84	2	1.29	
BNRC002	88	90	2	0.11	
BNRC003	54	74	20	0.15	
BNRC004	52	56	4	0.17	
BNRC004	62	68	6	0.15	
BNRC004	80	94	14	0.32	
BNRC004	98	100	2	0.36	
BNRC004	118	122	4	0.14	
BNRC005	88	90	2	0.17	
BNRC007	0	4	4	0.33	
BNRC007	44	48	4	0.47	
BNRC007	56	68	12	0.24	
BNRC007	78	80	2	0.13	
BNRC007	86	92	6	0.12	
BNRC008	0	8	8	0.47	
BNRC008	44	48	4	0.12	
BOA049	4	8	4	0.10	
BOA050	4	8	4	0.12	
BRA007	0	4	4	0.11	
BRA009	72	75	3	0.13	
BTR001	0	4	4	0.10	
BTR001	52	56	4	0.14	
BTR002	36	40	4	0.72	
BTR002	44	45	1	0.18	ЕОН
BTR003	44	49	5	0.34	ЕОН

Hole	From(m)	To (m)	Width (m)	Grade (g/t Au)	Comment
R8/3	24	26	2	0.18	
R8/3	34	38	4	0.28	
R8/3	42	44	2	0.23	
R8/4	6	12	6	0.20	
R8/4	16	31	15	0.23	ЕОН
R8/5	0	22	22	0.21	
R8/5	32	34	2	0.32	
R8/6	0	2	2	0.28	
R8/6	10	14	4	0.19	
R8/6	32	44	12	0.18	EOH
R8/7	0	4	4	0.21	
R8/7	10	14	4	0.16	
R8/7	18	22	4	0.23	
R8/7	26	28	2	0.23	
R8/7	32	36	4	0.16	
R8/7	42	45	3	0.19	EOH

APPENDIX 3:

Nugget Locations

Nugget Description	Datum	Easting	Northing
Gold in Gossan	GDA94_Zone 51	373948	6598491
Gold in Quartz	GDA94_Zone 51	373510	6599505

JORC Code, 2012 Edition – Table 1 Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 During 2021 and 2022, SensOre drilled 8 Reverse Circulation (RC) and 70 Aircore (AC) drillholes. Reverse Circulation (RC) drill holes were routinely sampled at 4m composites via spear from 0-72m and 1m intervals from 72m to End of Hole (EOH). Aircore (AC) drill holes were routinely sampled at 4m composites from surface to EOH. During 2015, Eastern Goldfields Mining Co. Pty Ltd (EGMC) drilled 5 diamond holes for 1111 metres at the Balagundi prospect. Whole core samples were sent to Bureau Veritas Laboratories for FA130 sample preparation (fines pulverized to 75um) and AAS Fire Assay (Fire Assay 30g Atomic Absorption Spectrometry). Reverse Circulation (RC) drill holes were routinely sampled at 1m intervals down the hole. RC Samples were collected at the drill rig using a rig-mounted cone splitter to collect a nominal 2 - 3 kg sub sample. SensOre samples were submitted to Bureau Veritas Laboratory in Kalgoorlie for preparation where each sample was crushed, dried, and pulverised to produce a sub-sample. SensOre AC samples were then processed via Lead Collection Fire Assay – AAS finish Nominal 40g charge (Bureau Veritas code FA001) with a 10ppb lower detection limit. SensOre RC samples were processed via Lead Collection Fire Assay – ICP-MS Nominal 40g charge (Bureau Veritas code FA003) with a 1ppb lower detection limit. EGMC sent whole core samples to Bureau Veritas Laboratories for FA130 sample preparation (fines pulverized to 75um) and AAS Fire Assay (Fire Assay 30g Atomic Absorption Spectrometry). No information found for previous historic holes.
Drilling techniques	Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	 SensOre air core drilling was undertaken by Kennedy Drilling using a KDA 250 air core rig with Sullair Rotary Screw 350psi x 1150cfm onboard compressor with an Air Research 900psi x 1400cfm booster. All air core drilling employed the use of a blade bit nominal 85mm diameter drill bit. Air core hammer was used intermittently if caprock was present. SensOre RC drilling was undertaken by Blue Spec Drilling Pty Ltd using a KL900 RC rig with onboard 1100/350 rig compressor and 1100/350 auxiliary compressor with a 2400cfm x 900psi booster. All RC drilling employed the use of a face sampling hammer and a nominal 140mm diameter drill bit. No information found for previous historic holes.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias 	 SensOre RC 1m samples are logged for drilling recovery by a visual estimate and this information is recorded and stored in the drilling database. Sample loss or gain is reviewed on an ongoing basis in the field and addressed in consultation with the drillers to ensure the best

Criteria	JORC Code explanation	Commentary
	may have occurred due to preferential loss/gain of fine/coarse material.	representative sample is collected. RC samples are visually logged for moisture content, sample recovery and contamination. The RC drill system utilises a face sampling hammer which is industry best practice, and the contractor aims to maximise recovery at all times. RC holes are drilled dry whenever practicable to maximise sample recovery. SensOre AC 1m samples are logged for drilling recovery by a visual estimate and this information is recorded and stored in the drilling database. Sample loss or gain is reviewed on an ongoing basis in the field and addressed in consultation with the drillers to ensure the best representative sample is collected. Air core samples are visually logged for moisture content, sample recovery and contamination. No study of sample recovery versus grade has been conducted as this is an early-stage drilling program to outline mineralisation. The drilling contractor uses standard industry drilling techniques to ensure minimal loss of any size fraction.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 No information found for historic holes. All SensOre drill sample intervals were geologically logged by qualified Geologists. Where appropriate, geological logging recorded the abundance of specific minerals, rock types and weathering using a standardised logging system. The entire length (100%) of each RC and AC hole is logged in 1m intervals. Where no sample is returned due to voids or loss of sample it is recorded in the log and the sampling sheet.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 SensOre AC samples were collected using a cyclone attached to the drill rig. The sample material was emptied on the ground and a 400g-1000g sub-sample was taken from each onemetre interval using a sampling scoop. Sub-samples for consecutive metres within composite intervals were placed in a prenumbered calico bag. Field QC involves the review of laboratory supplied certified reference material, in house controls, blanks, splits and duplicates. These QC results are reported by the laboratory with final assay results. No AC field duplicates or blanks were taken. All AC samples were analysed at Bureau Veritas Laboratories using Fire-Assay method FA001. Sample preparation included sorting, drying and pulverizing (85% passing 75µm). The AC sample sizes are considered more than adequate to ensure that there are no particle size effects. All RC 1m samples were cone split at the drill rig. No RC field duplicates or blanks were taken. Additional sample preparation was undertaken by Bureau Veritas Laboratories. At the laboratory, samples were weighed, dried and crushed to -2mm in a jaw crusher. The crushed sample was subsequently bulk-

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	particle size of 85% passing 75um. RC Sample sizes and laboratory preparation techniques are considered to be appropriate for this early stage exploration and the commodity being targeted. EGMC diamond holes were prepared at Bureau Veritas laboratories through FA130 (fines pulverized to 75um). No QAQC information found for EGMC diamond holes. No information found for previous historic holes. SensOre AC samples were assayed for gold using Gold Fire Assay by FA001. Fire Assay – AAS finish Nominal 40g charge analysed. Nature of the sample and/or lower sample weights may compromise detection limits. Detection limits in 10ppb. SensOre RC samples were assayed for gold using Gold Fire Assay by FA003. Lead Collection Fire Assay – ICP-MS Nominal 40g charge. Nature of the sample and/or lower sample weights may compromise detection limits. Detection limits in 1ppb. No geophysical tools or other non-assay instrument types were used in the analyses reported. Review of routine standard reference material and sample blanks suggest there are no significant analytical bias or preparation errors in the reported analyses. Results of analyses for field sample duplicates are consistent with the style of mineralisation being evaluated and considered to be representative of the geological zones which were sampled. Internal laboratory QAQC checks are reported by the laboratory. Review of the internal laboratory QAQC suggests the laboratory is performing within acceptable limits. EGMC drillholes were assayed at Bureau Veritas Laboratories using Fire Assay 30g Atomic Absorbtion Spectrometry. No QAQC information found for previous historic holes.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Located historical exploration data reported to GSWA has been extracted by AX8 and entered into a project database. SensOre RC and AC holes were logged by SensOre staff and the sampling, logging, drilling conditions and air core chips are reviewed. SensOre Exploration Manager verifies the field sampling and logging regime and the correlation of mineralised zones with assay results and lithology. Primary data is sent from the field to SensOre Principal Geoscientist – Data & Information Management who imports the data into the industry accepted DataShed database software. Assay results are merged when received electronically from the laboratory. No adjustments or calibrations were made to

Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Twin holes were not utilised to verify results. Reported drill hole intercepts are compiled by AX8 staff. No information found for previous historic holes. SensOre drill holes have their collar location recorded using a handheld GPS unit. Downhole surveys not undertaken in the air core drilling. Downhole surveys were undertaken in the RC drilling at 10m intervals at the end of the hole. Grid system is MGA94, Zone 51. The topographic data used (drill collar RL) was obtained from handheld GPS and is adequate for the reporting of initial exploration results.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 No information found for previous historic holes. SensOre drill spacing was variable to test target rationale (i.e. predicted mineralised cells from DPT combined with geochemical surface sampling and interpretations). Data from AC and RC drilling is not suitable for estimation of Mineral Resources. Compositing has been utilised in all drill holes where 4m composite samples were collected by spear sampling of individual 1m sample piles. No information found for previous historic holes.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 SensOre AC Drill holes were drilled -60° to 90° or 270° azimuth to test the weathered and primary (unweathered) portions of the underlying geological sequence which is interpreted to be sub-vertical with a north-west strike. Geophysical interpretations support the drilling direction and sampling method. SensOre RC Drill holes were drilled -60° to 225° azimuth to test the weathered and primary (unweathered) portions of the underlying geological sequence which is interpreted to be sub-vertical with a north-west strike. Geophysical interpretations support the drilling direction and sampling method. No information found for previous historic holes.
Sample security	The measures taken to ensure sample security.	 SensOre AC and RC samples were packed in bulka bags, secured with cable ties, and transported from the field by Yilgran Exploration Ventures (JV company) personnel to Bureau Veritas Kalgoorlie for fire assay determination. The laboratory then checked the physically received samples against a Yilgran Exploration Ventures (JV company) generated sample submission list and reported back any discrepancies. No information found for previous historic holes.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Historical data acquisition is managed, processed and stored by AX8 data staff in Perth. No external or third-party audits or reviews have been completed. No information found for historic holes.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 At Balagundi, the results reported are on granted licences M25/173, P25/2356, P25/2397, P25/2398, P25/2448, P25/2617, P25/2687, P25/2692, P25/2702, P25/2737 and pending licences P25/2808, P25/2809, P25/2866, P25/2867, P25/2874, P25/2875, P25/2876 held by a third-party individual and through an earn-in agreement, AX8 is acquiring an 80% interest in these licences The tenements are located in the Kalgoorlie region of Western Australia. The tenements are believed to be in good standing. There are no known impediments to obtaining a licence to operate, other than those set out by statutory requirements which have not yet been applied for.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Extensive exploration by other parties in the Balagundi mining camp area has been reviewed and guides AX8's exploration activities. Previous parties have completed soil geochemical surveys, RAB or air core drilling, RC drilling, and geophysical data collection and interpretation. Data by previous companies were collected and analysed using standard industry practice at the time of exploration. Historical exploration and sources are referenced below: Exploration in the 1980s was completed mainly by R Stroud (Wamex Report No. 16808, 19407, 21539, 21540 and 21541) focusing on the southern half of the project with systematic 100m–200m spaced soil sampling. Three diamond holes tested workings including the main Lone Star (BDD1-133m) on the Paris Gift line of mineralised lodes. A review of the work with proposed drilling was completed for Paget Mining by C. Rugless in 1988 (Wamex Report No. 27802). RGC, in JV with Paget Mining, completed detailed mapping, rock chip sampling and 48 RAB holes in 1991 (Wamex Report No. 33912). No follow-up work was completed. In the early 1990s, Delta Gold collected 180 soil and lag samples in the central northern project area (A 038886 –Balagundi North) followed up with one RAB traverse (Wamex Report No. 38942). Delta also explored the south-eastern project area, called West Balagundi, in BSR27 (Wamex Report No. 38917). Delta completed soil sampling and four RAB holes (Wamex Report No. 39368). Geopeko explored the north-east project area with 13 RAB holes on 200m nominal grid without intersecting anomalous gold (Wamex Report No. 40443). In the late 1990s, Acacia Resources/AngloGold completed substantial auger sampling, RAB/air core drilling and detailed 20m aeromagnetics over the entire Balagundi area (Wamex Report No. 51873, 55506, 55638, 56156, 56505, 56594, 58778-80, 58906). Most of the work is digital apart

Criteria	JORC Code explanation	Commentary
		from the first report, Wamex Report No. 51873. o From 2007 to date, M25/194 was explored by Eastern Goldfields Mining Company (Wamex Report No. 75796, 81192, 81687, 86233, 89787, 93180, 97619 and 101722). From 2016-2018, exploration was undertaken in joint venture with Great Boulder Resources Ltd (ASX: GBR) with substantial RC drilling completed on the main Balagundi Star/Mt Bellew trend, east and southeast of the Balagundi area. • Historical production of approximately 4,000oz (120kg) from extensive underground workings over the Balagundi area is reported in Kelly, L. F., 1954, List of cancelled gold mining leases which have produced gold. Western Australia: Department of Mines. Accessed: https://nla.gov.au/nla.obj-2855989124. Individual underground workings are available in Wamex Report No. 33912.
Geology	Deposit type, geological setting and style of mineralisation.	 The Balagundi project is prospective for orogenic gold and intrusion-related Archaean gold mineralisation. There are extensive historical underground workings within the area of these drilling campaigns. Gold production at the Balagundi mine was produced from Mt Bellew and Balagundi Consolidated Gold Mines from generally narrow, high-grade quartz veins. Gold occurs in an array of step shear zones and associated shallow dipping tension vein arrays and stockwork with vein grades of 10g/t ranging from 5 to 30g/t Au with lower associated grades in altered wall rocks. At Queen of Balagundi, the Paris Gift line of mineralised lodes had shafts to 60m depth with reefs up to 2.4m wide hosted in sheared schists at the contact between sediments and mafic volcanics, and dolerite and diorite intrusives.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Drill hole collar coordinates, azimuths, and dips of holes with intersections greater than 0.1g/t Au are listed in Appendix 1 and 2. Figure3, is location plans of all drilling conducted on the tenements. Drill hole intersections greater than 0.1g/t Au are listed in Appendices 2. Grid co-ordinates are MGA94 zone 51 Collar elevation is defined as height above sea level in metres (RL) Dip is the inclination of the hole from the horizontal. Azimuth is reported in MGA94 zone 51 degrees as the direction toward which the hole is drilled. Drill Depth of the hole is the distance from the surface to the end of the hole, as measured along the drill trace From (m) and To (m) is the distance down the hole as measured along the drill trace. Intercept Length (m) is the down hole distance of an intersection as measured along the drill trace Further information related to the reported drill holes and intercepts can be located on ASX
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually 	Announcements listed in the report. Drill hole intersections are reported from composite and 1m metre down hole samples. Intersection grade is reported as length-weighted average grade.

Criteria	JORC Code explanation	Commentary
	Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 A nominal cut-off of 0.01 g/t Au was applied with up to 4m of internal dilution. No Top Cuts were applied. No metal equivalent reporting is used or applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	At this reconnaissance stage, the geometry of the target mineralisation is not defined. All intersections reported are downhole. True widths of mineralisation are not currently known.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Refer to figures in main text. No cross section of historic drill intercepts has been provided as there is insufficient data currently within the Balagundi tenure to draft an accurate interpretation. A cross section drafted by SenseOre in 2022 can be found on page 5 of ASX Announcement: S3N – 25/08/2022
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All significant intercepts and summary of drill hole assay information are presented in the main text.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other exploration data which is considered material to the results reported in this announcement.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further work will be planned following further analysis and interpretation.